

Professeur: Mr. Ph. THYS

Classe: 6ème Tech. Qual. Elec.-Autom.

Evaluation: Labo – SIC 45-36-14-1

Laboratoire d'électronique

45

ROLE DE LA MISE EN SITUATION:

Apprentissage

► Intégration

ROLE DE L'EVALUATION:

Formative

▶ Certificative

NOM DE L'ETUDIANT:

MACROCOMPETENCE VISEE

Dans le cadre d'une entreprise, lors de la réalisation de câblage utilisant des composants simples (résistance, self, condensateur), associés ou non, sous régime continu ou alternatif, ou utilisant des machines tournantes à courant continu, être capable de mesurer, d'expliquer, de calculer les résultats par les mathématiques, de faire apparaître l'évolution des comportements en utilisant l'outil informatique, d'interpréter les différentes grandeurs électriques à l'aide de l'appareillage adéquat conformément au RGIE, aux règles de l'art et à la normalisation en vigueur.

N°	COMPETENCES PROGRAMME	TACHE	
L3'	Appareils de mesure	Etudier le comportement de la diode au silicium en mode direct et inverse.	
L5'	Electronique		
L7'	Analyse et résultat	SUPPORT	
L10'	Dossier	Il sera mis à disposition des étudiants une alimentation continue variable et deux appareils de mesure numérique. Les composants nécessaires à la réalisation du circuit se trouvent sur un boîtier à leur disposition.	
		CONSIGNES	
Date de l'expérimentation :		Suivre le développement avancé dans les notes qui vous sont fournies.	
Date	de remise du rapport :	Travailler avec soin, précision et rigueur.	

45

100

<u>Tâche</u>: Etudier le comportement de la diode au silicium en mode direct et inverse.

<u>Réf.</u>: Labo – SIC 45-36-14-1

E.A.C.: L3' [L3+L4+L5+L6+L17] Appareils de mesure.

Critères	Indicateurs	Résultats
Précision	Choix des calibres de mesure	
Cohérence	Choisir et positionner correctement les appareils	
Précision	Transcription des résultats, notation et unités	

E.A.C.: L5' [L9+L10+L11+L12]

Electronique.

Critères	Indicateurs	Résultats
Représentation	Etablissement des schémas de câblage	
	Etablissement de graphique illustrant les phénomènes	
Autonomie	Capacité de réaliser la démarche d'expérimentation	

E.A.C.: L7' [L20]

Analyse et résultat.

Critères	Indicateurs	Résultats
Pertinence	Les conclusions répondent aux questions	
Envergure	Les conclusions montrent l'intégration des notions	
Cohérence	Il existe un lien entre les résultats et les conclusions	
Production	Toutes les conclusions sont développées	

E.A.C.: L10' [L24+L25]

Dossier.

Critères	Indicateurs	Résultats
Production	Le dossier est complet en respect aux consignes	
Profondeur	Tous les points du rapport sont traités	
Langue	Français correct	
	Utilisation de la bonne terminologie	
Délais	Respect des délais	

Laboratoire d'électricité

<u>BUT</u>: Etude du comportement de la diode au silicium.

45

SIC

Relevé de la caractéristique directe

Soit à placer une résistance de 2000hms en série avec la diode au silicium. La tension qui est appliquée sera du type alimentation continue. La valeur de cette dernière sera adaptée pour obtenir diverses valeurs du **courant.** (Attention à la polarité de la diode).

1. Schéma de câblage

2. Expérimentation avec une diode BZ100.

Mesurer la valeur de la tension aux bornes de la diode et le courant la traversant.

Tableau des résultats

Tension générateur	Courant diode	Tension diode
7 00 1 1		<u> </u>
500mV		
600mV		
700mV		
750mV		
800mV		
850mV		
900mv		
950mV		
1V		
1,2V		

 $\frac{Chapitre\;n^\circ 14}{Manipulation\;n^\circ 45-Exp\'{e}rimentation\;n^\circ 36-Situation\;d'apprentissage\;certificative\;n^\circ 1}$

Graphique.

Tracer à l'aide de l'outil informatique, la courbe du courant (Id) en fonction de la tension (Vak). Id = f(Vak)

3. Expérimentation avec une diode 1N4007.

Mesurer la valeur de la tension aux bornes de la diode et le courant la traversant.

Tableau des résultats

Tension générateur	Courant diode	Tension diode
400mV		
450mV		
500mV		
550mV		
600mV		
650mV		
700mV		
750mV		
800mV		
900mV		
1000mV		
1100mV		

Graphique.

Tracer à l'aide de l'outil informatique, la courbe du courant (Id) en fonction de la tension (Vak). Id = f(Vak)

4. Analyse des résultats.

Question : Qu'appelle-t-on seuil de conduction d'une diode ?

	Question : Quel est le seuil de conduction théorique d'une diode au silicium ?
	Question : Représenter le symbole d'une diode, préciser l'anode et la cathode.
	Question : Comment avez-vous repéré la cathode sur la diode ? (Vous avez un multimètre à votre disposition).
<u>R</u>	elevé de la caractéristique inverse.
<u>R</u>	elevé de la caractéristique inverse. Soit à placer une résistance de 2000hms en série avec la diode au silicium. La tension qui est appliquée sera du type alimentation continue. La valeur de cette dernière sera adaptée pour obtenir diverses valeurs du courant. (Attention à la polarité de la diode borne positive sur la cathode).
	Soit à placer une résistance de 2000hms en série avec la diode au silicium. La tension qui est appliquée sera du type alimentation continue. La valeur de cette dernière sera adaptée pour obtenir diverses valeurs du courant. (Attention à la polarité de la diode borne positive
	Soit à placer une résistance de 2000hms en série avec la diode au silicium. La tension qui est appliquée sera du type alimentation continue. La valeur de cette dernière sera adaptée pour obtenir diverses valeurs du courant. (Attention à la polarité de la diode borne positive sur la cathode).
	Soit à placer une résistance de 2000hms en série avec la diode au silicium. La tension qui est appliquée sera du type alimentation continue. La valeur de cette dernière sera adaptée pour obtenir diverses valeurs du courant. (Attention à la polarité de la diode borne positive sur la cathode).
	Soit à placer une résistance de 2000hms en série avec la diode au silicium. La tension qui est appliquée sera du type alimentation continue. La valeur de cette dernière sera adaptée pour obtenir diverses valeurs du courant. (Attention à la polarité de la diode borne positive sur la cathode).
	Soit à placer une résistance de 2000hms en série avec la diode au silicium. La tension qui est appliquée sera du type alimentation continue. La valeur de cette dernière sera adaptée pour obtenir diverses valeurs du courant. (Attention à la polarité de la diode borne positive sur la cathode).

2. Expérimentation avec une diode BZ100.

Mesurer la valeur de la tension aux bornes de la diode et le courant la traversant.

Tableau des résultats

Tension diode	Courant diode
0	
U	
- 0,5V	
- 1V	
- 1,5V	
- 2V	
- 2,5V	
- 3V	
- 3,5V	
- 4V	
- 4,5V	

Graphique.

Tracer à l'aide de l'outil informatique, la courbe du courant inverse (Ii) en fonction de la tension (Vak). Ii = f(Vak)

3. Expérimentation avec une diode 1N4007.

Mesurer la valeur de la tension aux bornes de la diode et le courant la traversant.

Tableau des résultats

Tension diode	Courant diode
0	
- 0,5V	
- 1V	
- 1,5V	
- 2V	
- 2,5V	
- 3V	
- 3,5V	
- 4V	
- 4,5V	
- 5V	

Graphique.

Tracer à l'aide de l'outil informatique, la courbe du courant inverse (Ii) en fonction de la tension (Vak). Ii = f (Vak)

4. Analyse des résultats.

Question : Quelle est la particularité de la caractéristique inverse de la diode BZ 100 ?

Question : Que se passerait-il si l'on poursuivait la montée sous tension inverse sur la diode 1N4007?

Question : Enonce les caractéristiques de la diode 1N4007. Aide toi des catalogues existant à l'école. Part sur le principe que tu ne connais pas la référence et que tu dois aller en acheter une.

	Fiche	d'info	rmatio	n sur les a	ppareils	de mesure	
Apparei	ls analogi	iques					
N°	Туре		Calibre	Classe	Précision	Nb max Graduation	référence
	Mesure	Signal					
Apparei	ls numéri	iques					
N°	Ту	pe	Calibre	Résolution	Précision	Référence	Marque
	Mesure	Signal					

 $\underline{\mathbf{N}^{\circ}}$ = Le numéro de l'appareil dans votre circuit il peut s'agir de l'indice que vous donner à la mesure (ex : U2 et vous noter 2 pour le numéro)

<u>Type de mesure</u> = Tension – courant – résistance – puissance

<u>Type de signal</u> = DC (courant continu) – AC (courant alternatif)

<u>Calibre</u> = Il s'agit du calibre sélectionné avec le commutateur de l'appareil pour la mesure, il doit être le plus proche de la valeur à mesurer.

<u>Classe</u> = information sur la précision de l'appareil

Résolution = la précision d'un digit pour le calibre retenu

<u>Précision</u> = en analogique il s'agit de la précision de l'échelle, à combien de graduation près En numérique il s'agit de la précision de la valeur mesurée et du nombre de digit de Précision

<u>Nombre maximum de graduation</u> = Le nombre de graduation maximum sur l'échelle de lecture utilisée sur l'appareil.

<u>Référence</u> = la référence se trouvant sur l'auto collante placée sur l'appareil.

Marque = la marque de l'appareil (velleman, BBC, waveteck, Finest)